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FOREWORD 

This report was prepared under the National Aeronautics and Space 

Administration Grant No. NGL-33-016-119, which Grant supports the 

research involving the problem of sonic boom. 

research is t o  study the diffraction of a plane shock wave by general 

The purpose of th is  

two-dimensional weak disturbances. 
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Solutions for the diffraction of a plane shock wave by general two- 

dimensional weak disturbances are obtained. The technique employed is an 

extension of the method developed by Ting and Ludloff for the solution of 

aerodynamics of blasts. 

by distributions of sources, doublets and vortices in a two-dimensional 

case and by a distribution of point sources in an axisymmetric case, 

disturbance pressure behind an advancing shock is expressed by integrals 

of distributions. The shape of diffracted shock and other disturbance 

quantities are expressed in terms of disturbance pressure behind the 

shock and disturbance velocity components ahead of the shock. 

Disturbances due to a solid body are prescribed 

The 

Application 

to shock diffraction of thin structure in still air is shown. Some other 

applications are indicated. 
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defined i n  Eq. (5.11) 

numerical number, Eq.(%.4) 

q u a n t i t i e s ,  determined by Eqs. (5.29) 
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d i f f e r e n t i a l  operator,  Eq. (4.12) 
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defined i n  Eq.(4.13) 

shape of t h i n  s t r u c t u r e  Section V I 1  
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ve loc i ty  r e l a t i v e  t o  curved shock 

defined under Eq. (5.38) 

undisturbed dens i ty  
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defined under Eqs. (4.10) 

Q2 
5 defined in  Eq. (5) 
Subscripts 

a 

d 

e 

i=o 1,2 

n 
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S 

7 

X , Y ¶ t  

0 

axisynrmet r ic  

doublet 

even so lu t ion  

ind ices  

normal component 
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source o r  conditions of shock 
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conditions ahead of shock 
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I. INTRODUCTION 

In  t h i s  repor t ,  the  so lu t ions  f o r  t he  d i f f r a c t i o n  of a plane shock 

wave by general two-dimensional weak disturbances are presented. 

technique employed here i s  a n  extension of the  method developed f o r  t he  

aerosynamics of blasts1'*. 

p r a c t i c a l l y  i n t e r e s t i n g  shock d i f f r a c t i o n  problems, such as b l a s t  e f f e k t s  

on a i r c r a f t s  and on wings a t  angles of a t t ack ,  moving subsonically o r  

supersonically,  d i f f r a c t i o n  of shock due t o  turbulances i n  atmosphere, 

d i f f r a c t i o n  of shock due t o  non-smooth w a l l s  i n  shock tubes and d i f f r a c t i o n  

of sonic-booms due t o  non-planar surfaces on the ground. 

The 

The present so lu t ions  can be applied t o  many 

Disturbances can be described by t h e  d i s t r i b u t i o n s  of sources (or  

s inks) ,  doublets, and v o r t i c e s  i n  a two-dimensional d i f f r a c t i o n  problem, 

and by d i s t r i b u t i o n  of point sources (or sinks) i n  a n  axisymmetric 

d i f f r a c t i o n  problem. 

sidered i n  t h e  present report. 

of d i s t r i b u t i o n s  with respect t o  the  shock wave remain unchanged when the  

shock passes over, while t he  s t r eng ths  of d i s t r i b u t i o n s  which represent the  

disturbances of t h e  s o l i d  body a r e  changing across  t h e  shock. 

of shock due t o  atmospheric turbulance w i l l  be presented i n  a separate report .  

The disturbances caused by s o l i d  bodies are con- 

For t h i s  kind of disturbances,  t he  v e l o c i t i e s  

The d i f f r a c t i o n s  

The disturbance pressure p behind the  shock wave is  governed by a s i m p l e  

wave equation i n  th ree  va r i ab le s  (x,y,t) ,  where t h e  coordinates a r e  fixed 

with the  

s l i g h t l y  

x = U t ,  

x, t wi th  

undisturbed flow behind the  shock. The shock condition across  t h e  

disturbed shock f ron t  y i e ld  a boundary condition D P = G ( Y , t )  a t  

D 

constant c o e f f i c i e n t s  and G(y,t) is a given function r e l a t e d  t o  t h e  

x, t 
is  a second order l i n e a r  hyperbolic d i f f e r e n t i a l  operator of 

x, t 



prescribed disturbances ahead of t h e  shock. 

formation of va r i ab le s  x ,y , t ,  t he  wave equation i s  preserved and the  

By means of a Lorentz t rans-  
- - -  

- - -  
boundary condition a t  the  shock 

operator 5.. 
= 0 reduces t o  E- -p = G(y,t), where the  

x, t 
i s  of t h e  same type as D 

X I  X, to 

The prescribed general two-dimensional disturbances can be s p l i t  i n t o  

even, odd and axisyrmnetric functions of y; and accordingly, the  disturbance 

pressure p behind t h e  shock can be divided i n  t h e  same manner t o  even, odd 

and axisynunetric solutions.  They w i l l  be determined separately. 

For the  even so lu t ion  of p, p7(G < 0, $ = 0, E )  has e i t h e r  t o  vanish 

before the  shock h i t s  t he  leading edge of t he  prescribed source d i s t r i b u t i o n  

o r  t o  be determined from the  prescribed source d i s t r i b u t i o n  when t h e  shock 

passes over it. The disturbance pressure i n  $ > 0 as a so lu t ion  of t h e  

wave equation can be expressed a s  an i n t e g r a l  of the  known d i s t r i b u t i o n  

p- (f; < 0, $ = O+, E) and an  i n t e g r a l  of an  unknown f i c t i t i o u s  d i s t r i b u t i o n  

pg(z > 0, 9 = O+,’t) which i s  determined by the  boundary condition a t  the  
Y 

shock. When t h e  even disturbance i s  represented as a n  i n t e g r a l  of t h e  source 

(or sink) d i s t r i b u t i o n  f ( x , t )  on the  plane y = 0, the boundary condition a t  

the  shock reduces t o  a d i f f e r e n t i a l  equation 5- p- (G > 0, O+, t )  = E(i,t). 
G(y,t) is a known function r e l a t e d  t o  $(x,t). 

n 

x,f Y - - -  
Since the  d i f f e r e n t i a l  operator 

- a 
I)- - can be w r i t t e n  as ‘- X, x) with X,,x’, real, d i s t i n c t  and 

X, t - -  
pos i t ive ,  so lu t ions  f o r  p (G > 0, O+, E) and hence f o r  p(G 2 O,y, t) are 

obtained. 

d i s t r i b u t i o n  replaced by a doublet o r  a vor tex  d i s t r ibu t ion .  

Y 
For odd so lu t ion ,  t he  same technique i s  used with t h e  source 

When t h e  prescribed disturbance i s  axisymmetric with t h e  axis normal 

t o  the  shock f ront ,  t h e  disturbance pressure behind t h e  shock i s  a l s o  

2 



axisymmetric and i s  governed by an axisymmetric wave equation. 

condition a t  the  shock L = 0 remains t h e  same as t h e  two-dimensional case. 

The disturbance pressure can again be represented as i n t e g r a l  of a known 

d i s t r i b u t i o n  f o r  t he  region 

turbance, and an i n t e g r a l  of a n  unknown f i c t i t i o u s  d i s t r i b u t i o n  f o r  the 

region 

the  shock, through the  shock boundary condition. 

The boundary 

< 0 which is  r e l a t e d  t o  the prescribed d i s -  

> 0 which i s  aga in  determined by the  source d i s t r i b u t i o n  ahead of 

I n  Section 11, the  prescribed disturbances a r e  presented and a r e  expressed 

i n  a moving coordinate system f ixed  with respect t o  the  undisturbed flow 

behind the  shock. 

disturbance q u a n t i t i e s  are derived i n  Section 111. 

conditions f o r  t h e  governing equation f o r  disturbance pressures are obtained 

i n  Section IV. I n  Section V, the Lorentz transformation i s  f i r s t  introduced. 

Solutions f o r  disturbance pressure a r e  expressed by Possio i n t e g r a l s  f o r  two- 

dimensional cases and by retarded po ten t i a l s  f o r  t he  axisymmetric case. 

Analytic expressions of f i c t i t i o u s  d i s t r i b u t i o n s  a r e  obtained. 

so lu t ions  of disturbance pressure and other q u a n t i t i e s  are summrized i n  

Governing equations f o r  disturbance pressure and other 

Boundary and i n i t i a l  

Final. 

Section VI.  The present so lu t ion  is  applied t o  the  shock d i f f r a c t i o n  by a 

t h i n  s t r u c t u r e  i n  Section V I I .  

t o  t h e  so lu t ion  f o r  t h e  aerodynamics of b l a s t s  of Refs. 1 and 2. 

The r e s u l t  f o r  t h i s  s i m p l e  example reduces 

The author would l i k e  t o  thank D r .  Le Ting f o r  suggesting the  problem 

and f o r  h i s  he lp  i n  t h e  i n i t i a l  s tage  of t h i s  work. 

The author would a l s o  -ke thank D r .  A; F e r r i  fo r  h i s  readings of t he  

manuscript and h i s  suggestions. 
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11. PRESCRIBED DISTURBANCES 

We choose a coordinate system (x '¶y ') f ixed  with the undisturbed flow 

ahead of t he  advancing shock wave. 

propagating d i r e c t i o n  and t h e  y '-axis, being perpendicular t o  the  x '-axis, 

is  the  second coordinate i n  t h e  general  two-dimensional problem (Fig-1). 

W e  assume t h a t  the  disturbances a r e  generally weak i n  the  sense t h a t  t he  

disturbance v e l o c i t i e s  a r e  much smaller than the  speed of sound ahead of the  

The x'-axis c0incide.s with the  shock 

shock. The disturbances are i r r o t a t i o n a l  and s t a t i o n a r y  with respect t o  

x ,y . Therefore the  disturbance ve loc i ty  p o t e n t i a l  and stream function 

e x i s t  and they s a t i s f y  the  Laplace equation . 
' I  

3 

We fu r the r  assume t h a t  t he  disturbances can be expressed by a combina- 

t i o n  of d i s t r i b u t i o n s  of sources (or s inks) ,  doublets, and vo r t i ce s  along 

x'-axis f o r  a two-dimensional shock d i f f r a c t i o n  problem, and by a d i s t r i -  

bution of point sources (or  sinks) along x'-axis i n  a n  a x i s m e t r i c  shock 

d i f f r a c t i o n  problem. 

due t o  each d i s t r i b u t i o n  separately.  

Since the  prcblem is  l inea r ,  we can treat d i f f r a c t i o n  

I n  the  following, we s h a l l  present 

t h e  ve loc i ty  po ten t i a l s  or  stream functions f o r  each d i s t r ibu t ion .  

A .  Source Dis t r ibu t ion  i n  Two-Dimensional Disturbances 

Suppose the  source d i s t r i b u t i o n  along x '-axis i s  spec i f ied  by fo(x ') . 
It is w e l l  known t h a t  t he  ve loc i ty  po ten t i a l  a t  any point P(x',y') due t o  

a n  element of the  source d i s t r i b u t i o n  fo(x;)6x; a t  (x;,O) i s  

4 



The ve loc i ty  po ten t i a l  @ (x',y') due t o  the  e n t i r e  source d i s t r i b u t i o n  

can be obtained by in tegra t ing  over x:, 

S 

Here the  i n t e g r a l  i s  assumed t o  e x i s t .  

The above expression can be rewrit ten i n  the  following form, 

c f (x;)dt;dx; c(t'-t;)T E 0 

rns(X/,Y') = - - 
[c 2 (t ,-ti) 2 - (X'-Xi) - y 

-03 -03 

2 ,2 5 with E = [(x '  - xi) + y ] 

= 1 r f (x;)dx; (. + [A 2 - (x '  - "1 
@os  2Tr 0 A - 0 3  

and 
-03 

(2.4) 

Here t ' and c a r e  respec t ive ly  the  t i m e  and the speed of sound behind the 

which i s  due t o  the lower l i m i t  of t he  in tegra t ion  of t '  i s  shock. @ o s  

a number of very la rge  magnitude. 

1 

Note t h a t  any order of i ts  d i f f e r e n t i a t i o n  

with respect t o  i t s  argument are zero. 

we are in te res ted  only i n  the disturbance ve loc i ty  which i s  r e l a t ed  t o  the 

Moreover, w e  s h a l l  see it later t h a t  

der iva t ive  of the ve loc i ty  poten t ia l .  

exis tence of t h i s  quant i ty .  

Therefore, w e  may disregard the 

Now we have wr i t t en  the  two-dimensional ve loc i ty  

po ten t i a l  i n  a n  "unsteady-like" expression. The reason f o r  t h i s  s tep  w i l l  be 

seen c l e a r l y  later. 

B. Doublet Dis t r ibu t ion  i n  Two-Dimensional Disturbances 

I f  the  doublet d i s t r i b u t i o n  along x'-axis is p, (x').  The ve loc i ty  
0 

po ten t i a l  @ (x',y') due t o  t h i s  d i s t r i b u t i o n  is d 
5 



Again, we can rewrite the above expression in an %nsteady-like" form. 

-03 
A + m  

C. Vortex Distribution in Two-Dimensional Disturbances 

If the vortex distribution along x'-axis is vo(x'). The stream function 

a t  P(x',y') due to an element of vortex distribution v (X')~X' at: (x;,O) is 0 1  1 

The stream function Jl(x',y') due to the entire vortex distribution can be 

obtained by integrating over x'. 

1 
Jl(x',y') = - - 4rr Vo<x;)dx;an [(x' - x;? 3. y'2] 

-03 

The above expression can be rewritten in the following form. 

with 
1 2 Jro = - ?;;s, V0(x;)dx;Lh (. + [A - (x' - x;)' - ~'~1%) (2 0 lo) 

-OJ A - 1 0 3  

6 



Here I# has t h e  same proper t ies  of H as discussed above i n  Eq.(2.3) 
0 o s  

D. Source Distributicm i n  Axismetric Disturbances 

I f  the  point source d i s t r i b u t i o n  along x ‘-axis i s  go(x I ) , t he  ve loc i ty  

po ten t i a l  a t  any poin t  ~(x’,y’) i s  

(2 0 11) 

Knowing the  ve loc i ty  po ten t i a l  o r  stream function, w e  can determine 

disturbance ve loc i ty  components, pressure and density.  The ve loc i ty  components 

a re 

(2.12a) 

(2.12b) 

3 Disturbance pressure can be found from the  l inear ized  Bernoulli’s equation 

Ahead of t h e  shock, s ince  the  disturbances are s t a t iona ry  and t h e  main flow 

i s  a t  rest i n  x’,y , therefore  both disturbance pressure and dens i ty  a r e  zero. I 

2 - Po - COPO = 0 (2.13) 

The prescribed disturbances s h a l l  be used t o  f ind  a boundary conditions 

i n  order t o  solve the  disturbed flow f i e l d  behind the  advancing shock. 

Therefore i t  is usefu l  t o  write t h e  ve loc i ty  po ten t i a l s  and stream function 

i n  a moving coordinate system (x,y,t)  fixed with t h e  undisturbed flow behind 

the  shock. The r e l a t i o n s  between the  moving and the  s t a t iona ry  coordinates 

a r e  

7 



x ' =  x 4- (uo - U)t 

Y J I =  Y 

t'= t 

(2.14) 

Here U 

turbed flow behind the  shock with respect t o  x ' , ~ ' ~  

is  t h e  shock veloci ty ,  and (Uo - U) is the  ve loc i ty  of the  undis- 
0 

Hence the  expressions of ve loc i ty  po ten t i a l s  and stream function can 

be wr i t t en  i n  x,y,t  coordinates. 

they a r e  

By changing the order of in tegra t ions ,  

(2.15) 

(2.16) 

(2.17) 

and 

Here, the in t eg ra t ion  constants sj god and # have been dropped. Now it is  

c l e a r  t h a t  from E q ~ ~ ( 2 . 1 5 )  t o  (2.18), they represent t he  ve loc i ty  po ten t i a l  

0 s' 0 

8 



o r  the  s t r e a m  function a t  a point (x,y,t) due t o  moving source, doublet 

o r  vortex d i s t r ibu t ion .  

a r e  preserved. 

The expression of disturbance ve loc i ty  components 

vo(x,y,t) = - & % !  = - 
a Y  

(2 19a) 

(2.19b) 

When the shock wave passes over t h e  d i s t r i b u t i o n s  which represent t h e  

disturbances due t o  a s o l i d  body, the  s t rengths  of these  d i s t r i b u t i o n s  behind 

the  shock change, These d i s t r i b u t i o n s  are r e l a t ed  t o  the  shape of the  body 

and the  undis t r ibu ted  flow ve loc i ty  r e l a t i v e  t o  t h e  body. 

p o t e n t i a l  and the  stream po ten t i a l  have t h e  similar expressions of 

Eqs.(2.15) t o  (2.18) provided t h a t  fo,po,vo and go are replaced by f ,p ,  v 

and g respec t ive ly ,  and lower l i m i t  of time i n t e g r a l  is  replaced by a 

constant. 

The ve loc i ty  

9 



111. GOVERNING EQUATIONS 

Referring to the coordinates x,y,t fixed with the undisturbed flaw 

field behind the shock, we can write the differential equations determining 

the general two-dimensional unsteady rotational flow behind the shock in 

the following: 

a; - a;; - a; 1 a- x+Uax 4 - v - =  aY -a2 

- a  -$] ($= 0 [k + x + 

P 

(3. la) 

(3. lb) 

(3. IC) 

(3. Id) 

where j = 0 for the two-dimensional problem and j = 1 for the axisymmetric 

problem. 

Since the disturbances are weak in comparison with the undisturbed 

quantities, we may write: 

(3.2a) 

(3.2b) 

(3.2~) 

(3.W 

Substituting the expressions (3.2) into Eqs.(3.1), we have the linearized 

differential equations for disturbances 

10 



a U -  1 
at--- R ax 

where c is the speed of sound i n  the undisturbed flow behind the  shock 

L Y E  
R c -  

Eliminating from the above equations (3.3) three out of four var iables ,  

we have the wave equation 

p,u,v a r e  s a t i s f i e d  by the following equations 

a v = o  a a a 
z a p  = = p U  = -  a t  

( 3 . 3 ~ ~ )  

(3.3b) 

(3.3c) 

(3,3d) 

(3.4) 

(3.6) 

It is now necessary t o  f ind  two i n i t i a l  conditions and one boundary 

condtion f o r  p t o  s a t i s f y  uniquely the wave equation (3.5). 

11 



IV.  BOIJNDARY AND INITIAL CONDITIONS 

A, Boundary Condition a t  Shock Front 

Relat ive t o  the  undisturbed flow behind the shock, t h e  disturbances 

i n  the  f ront  of the  shock are moving with constant ve loc i ty  

the  undisturbed shock f ront  moves with the  ve loc i ty  I-U. 

shock f ron t  can be expressed by t h e  equation (Fig.2) 

-(Uo-U), while 

The disturbed 

x = U t  + s (y , t )  (4.1) 

Since the  disturbances a r e  weak, s i s  a higher order quant i ty  i n  comparison 

with t h e  f i r s t  order quant i ty  U t .  The shock angle i s  given by 

a higher order quantity.  

The shock ve loc i ty  which i s  directed normal t o  the  shock f ron t  a t  any 

point may be wr i t t en  i n  an x-component U and a y-component v . 
S S 

(4.4) s = us tan8 ~8 
S 

The oblique shock conditions on the  shock f ron t  x = U t  + s ( y y t )  a r e  

- 
1 -2 

(4.5a) 

(4.5b) 

(4.5c) 

12 
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where 4 = t he  normal component of the  ve loc i ty  re la t ive t o  the  shock n 

behind the  shock. 

= (G - vS) s ine  + (ii - us) case 

= - u - s  + u  

= the  t angen t i a l  component of the  ve loc i ty  r e l a t i v e  t o  t h e  

(4.6a) 

t 

*T 

shock behind the shock 

= (C - vs) cos@ - ( 2  - us) s ine  

= v  
- 

= the  normal component of t he  ve loc i ty  r e l a t i v e  t o  the qIl0 

shock ahead of the  shock 

= -v s ine  - [(u, - u) + us] case 
X 

= - u  f U o - S  
0 t 

- 
= the  t angen t i a l  component of the  ve loc i ty  r e l a t i v e  t o  the  

qTO 

shock ahead of t he  shock 

(4.6b) 

( 4 . 6 ~ )  

(4.6d) 

- -  - (uo - VI Y O  + 
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S u b s t i t u t i n g  Eqs.(4.6) and Eqs.(3,2) i n t o  Eqs.(4.5) and neglec t ing  h igher  

order  q u a n t i t i e s ,  we have 

-RU + R[-S + U] - PU = -R U + R0(uo-st) (4.7a) t 0 0  

2 2 
P 4- p -t RU + pU + 2RU (st - U) 

= p0 -!- R U2 - 2R0U0(u0- st> 
0 0  

%Po 
Y - 1  Ro 

= u2, - 2u0 (uo - St)  + 

(4.7b) 

(4.7c) 

v = - (U0 - U ) s  + s (4. Zd) 
Y O  

The undis turbed q u a n t i t i e s  must  s a t i s f y  the  usua l  Rankine-Hugoniot normal 

shock r e l a t i o n s ;  namely 

RU = RoUo 

P + RU 2 = Po + RoUo 2 

Hence the  shock r e l a t i o n s  (4.7) reduce t o  

R[-St + U] - PU = Ro(uo - st) 

- R U (u0 - st) 2 
PO 0 0  p + pU + 2RU(st - U) = 

U ( s t  - u) -!- 2- (p' - E) = - Uo(Uo - St) Y -1 

/ v =  - (U - u )  s + v  
0 Y O  

(4.8a) 

(4.8b) 

( 4 . 8 ~ )  

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 
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From Eqs.(4.9), we can solve f o r  p,u,s and s i n  terms of p, u and vo, t Y 0 

c 2 p =  (I+"*) P 

u = -  O l  P + uo Rc 

U 
%! 2c 2-1 - (U0 - U ) s t  = y p + -- y+l M 0 

-(U0 - U)SY = v - v 
0 

(4. loa) 

(4. lob) 

(4.10c) 

(4. loa) 

-1) where Qo = - (' 
M2 [ (y-l)M2+2] 

By using d i f f e r e n t i a l  equations (3.3) and (3.5) one can eliminate u,v,p and 

s from Eqs.(4.10). I n  t h i s  way, a boundary condition 

applied a t  t h e  shock x = U t ,  can be formulated, 

D p(x=Ut,y,t) = G(x=Ut,y,t) 
x,  t 

where D i s  a l i n e a r  d i f f e r e n t i a l  operator defined 
x , t  

D 
x ,  t at2 

= (01 + M + 3 M )  - a2 + (1+2+2M nl)c hat a2 

2 a2 
I -  M(l+QlM-02) c -2 

ax 

G i s  a n  expression of prescribed disturbances 

f o r  p alone, t o  be 

as 

(4.11) 

(4-12) 

(4.13) 
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B. Boundary Condition on x-axis 

Since prescribed disturbances can be categorized as even ( l i n e  source 

d i s t r ibu t ion )  , odd ( l i n e  doublet o r  vortex d i s t r ibu t ion )  and axisymmetric 

(point source d i s t r ibu t ion )  disturbances, the  disturbances behind t h e  

shock can be considered as even,odd and axisymmetric respectively.  

two-dimensional problem, w e  can solve t h e  wave equation i n  the  region 

-a < x <Ut and 0 s y < 00. Furthermore, t h e  prescribed disturbances which 

I n  the  

a r e  s t a t iona ry  with respect t o  x', y' may be taken over by the  advancing 

shock. 

be spec i f ied .  

Therefore, a boundary condition on the x-axis behind the  shock should 

A s  s t a t e d  previously, t he  disturbances considered a r e  due t o  t h e  motion 

of a body. The s t rengths  of disturbances are changing while v e l o c i t i e s  are 

unchanged across  the  shock. The ve loc i ty  p o t e n t i a l  a t  any point (x 5, Ut,y,t) 

behind the  shock due t o  the  source d i s t r i b u t i o n  f ( x , t )  is  

(4.14) 

where t = 0 i n  t h e  i n s t a n t  t h a t  t he  shock h i t s  t he  leading edge of the 

source d i s t r i b u t i o n ,  and 

f[x + (Uo-U)t] = 0 f o r  x > U t  

i.e. t h e  v e l o c i t y  p o t e n t i a l  a t  (x I; Ut,y,t) is  a f f ec t ed  only by t h e  

d i s t r i b u t i o n  behind t h e  shock. 4 As y 4 0, Hs can be found as 

Qs(x s Ut,y + 0 , t )  = f(ct-y) f[x + (U0 - u) t ]  (4.15) 

16 



Then the disturbance velocity, by Eq0(2.19a) 

v(x < Ut, y 4 3,t) = ff[x + (U0 - U)t] (4.16) 

By applying Eq,,(3.3c), we have the boundary condition for p on x-axis 

u -u 
f'[x + (U - U)t] p (x Ut,O,t) = - -- Re o 

' Y  2 c  0 

where the prime of a function denotes the differentiation with respect to 

its argument. 

Similarly, the boundary condition on the axis behind the shock for a 

doublet distribution can be obtained 

u -u 
F1'r.X + (Uo-U)tI ac 0 

2 c  p(x 2 Ut,O,t) = - - - 

For a vortex distribution, 
u -u 

v[x + (U -U)tl p(x < Ut,O,t) = -.- Rc o 
2 c  0 

and for a source distribution in axisymmetric case 

u -u 
g'Cx + (Uo-U)t1 ypy(x 2 Ut,O,t) = - -- Rc o 

2rr c 

C. Boundary Condition at Infinity 

D. Initial Conditions 

p (x 5 Ut,y,t 3 -=) = 0 

pt(x 5 Ut,y,t 3 -=) = 0 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.2 1) 

(4.22) 

(4.23) 
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V, DERIVATION OF ANALYTIC SOLUTION FOR 
DISTURBANCE PRESSURE 

A. The Lorentz Transformation 

The boundary condition a t  shock, Eq. (4 .  11), is prescribed a t  the  
- - -  

plane x =: U t .  We may introduce a new coordinate system (x,y,t) r e l a t ed  

t o  t h e  old va r i ab le  (x,y,t) by t h e  Lorentz transformation 

The plane = 0 corresponds t o  the  plane x = U t ,  and the  wave equation 

remains unchanged, 

The boundary condition a t  i n f i n i t y ,  Eq.(4.21) becomes 

P " 0  
-2 -2 5 

a s ( x  + y )  4- (5.3) 

The boundary condition a t  shock (f = 0) becomes (Appendix A) 

Here 5- - is a linear d i f f e r e n t i a l  operator of hyperbolic type 
X¶ t 

the  Mach number of undisturbed flaw ahead of t he  
2 2vML-Iv-1) 

with Mo = 

shock. 

( y  - 1) 23.2 

&f = O , i , t )  can be r e l a t ed  ao prescribed disturbances. For an 

even disturbance-source d i s t r ibu t ion .  

18 



uo-u uo-u 
where 6 = (1-2j' [MT + 5 I- M F  E 3. I? - U (5.7) 

For an odd disturbance - doublet or vortex distribution 

(5.8) 

where F (5) =-pL(c) for doublet distribution, and Fo(c) = vo(C) for vortex 

distribution. For an axisymmetric disturance - point source distribution 
0 

The boundary conditions, Eqs. (4.17) to (4.20) are also transformed. 

For an even disturbance from Eq. ( 4 .17 ) ,  

where 

u -u 
p p  O,O,t) = - -- Rc f'(a,({,;+E) I ,  - - 

2 c  

2 %  a = U /C (l-M) 
0 0 

Mu xo = (l-M 2 + * )  +- 
0 

For an odd disturbance, from Eq.(4.18) or (4.19) 

uo-u 
p(2 s O , O , E )  = j- Rc - F[ao(~oii+t)] 

C 

(5.10) 

(5.11)  

(5.12) 

(5.13) 
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For an axisymmetric disturbance from Eq.(4.20) 

The two i n i t i a l  conditions Eqs.(4.22) and (4.23) a re  now 

p = p E " o  f o r  E - - Q) 

B. The Possio Integral  - Two-dimensional Problem 

In general, the solution of such two-dimensional boundary i n i t i a l  

value problems a s  one defined by Eqs.(5.2),(5.3),(5.4) and (5.10)[or 

(5.133 can be solved i n  terms of "temporary sources (or d ~ u b l e t ) ' ~  spread 

over a cer ta in  area i n  the ;-E plane characterizing the motion of the 
1 disturbances. 

the even solution 

Such solutions can be writ ten as Possio integrals  . For 

and for  the odd solution, 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

Here i n  numerator p- and p of the  integrals  represent respectively the 

"temporary source strength" and the gltemporary doublet strength"; the 

denominator represents the "pseudo distancea1 between llsource (or doublet)" 

f , 0 , ~  and p i n t  x,y,t,  

by the hyperbola 

Y 

- - -  
The integrationzrea i n  the {,'T plane is confined 

20 



- 2 -2 f t -S=[(%-$) + y ] 

and the s t r a igh t  l i n e 7  = -a (see Fig. 3). 

Equation (5.16) can be wri t ten i n  the following form 

- 1 pd,. s" Pp(6 O , O , ? W  
p(x s 0,j; > O,i)= - - 

IT 2 -2 5 [ ( E - 1 . ) 2 - ( x - 9 2 - G L ] f  
-00 x-C(t-7) -Y 1 

(5.18) 

Equation (5.17) becomes 

(5.19) 

It is obvious tha t  the method is applicable only i f  p- o r  p i s  Y 
prescribed on the e n t i r e  plane 7 = 0. 

l e f t  half  of t he  plane $ = 0 (G s 0), while it is unknown i n  the r ight  

half  of the plane (2 > 0). 

f i c t id ious  d is t r ibu t ion  p- (Z > O,O,t)  or  p(2 > O,O,'f) which w i l l  replace 

shock boundary condition Eq,(5.4) prescribed on the plane 2 = 0. 

However, p- or p i s  given fo r  the  Y 

The next s tep  i s  t o  f ind an equation fo r  

Y 
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C. getarded Po ten t i a l  - Axisynnnetric Problem 

By the  Kirchhoff's theorem, a so lu t ion  of t he  wave equation can be 

w r i t t e n  i n  terms of retarded po ten t i a l  2 ¶ 5  

For an axisymnetric problem 

(5.20) 

Again t h i s  method i s  appl icable  only i f  p- i s  prescribed on the  e n t i r e  

x-axis. 

known on the  r i g h t  ha l f  of t he  axis.  

f o r  t h e  f i c t i t i o u s  d i s t r i b u t i o n  p-(G > O,O,t') which w i l l  replace shock condi- 

t i o n  prescribed on the  plane G = 0. 

Y 
p- i s  given f o r  the  l e f t  ha l f  of the  a x i s  (2 9 0) ,  while it i s  un- 

The next s t e p  is  t o  f ind  an  equation 

- 
Y 

Y 

D. Egaluation of F i c t i t i o u s  Bis t r ibu t ions  --- 
For even disturbances,  by s u b s t i t u t i n g  Eq. (5.10) i n t o  Eq. (5.18) we 

have 

(5.21) 

To f ind  an equation f o r  p-($ > O , O , t ) ,  l e t  us apply shock boundary 

condition, Eq. (5.4) 
Y 
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u -u 
+-- RC 2 c  o a2 0 (4,) 

2 wh2re H(Co) = -- - 2M io+ lo. 2 

provided t h a t  

This shock boundary condition can be s a t i s f i e d ,  

M* 

(5.23) 

with io = U /c(l-M?)' and = c/Uo; and 
0 

u -u a , ( X o  + 2M)fN(ii E) (5.24) p--(O',O,t) + 2Mp--(O $,E) = - -- + Rc o 4 

F Yt 2 c  0 

Now the  problem i s  reduced t o  obta in  a function p - ( x  > O , O , E )  which 
Y 

s a t i s f i e s  d i f f e r e n t i a l  equation (5.23) and two boundary conditions a t  

x = o+,y = 0,s. These two boundary conditions can be obtained by a kind of 
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1 
"mean value theorem" a t  = 0 and Eq.(5.24). They are, (see Appendix B) 

P,(O+,O,E) = 
-1 

'0 4M)f I(; E,] -- c + T-- f+l 0 0 

and 

u -u 
4M3 '0 +-- 1 o (c, + 4M)] aof"(a E )  + 

0 
p--(O ,O,E) = - 
yx 

(5.25) 

(5.26) 

It is  shown i n  Appendix C t h a t  t he  solutiol-1 f o r  Eq.(5.23) has the  

f o m  

i=0,1,2 i=1,2 

- Mu 
Here a = U /c(l-M 2 %  ) , h - = c / U o a  X o  = (I-$+ 2) Gland h2 are two real, 

0 0 uo 
d i s t i n c t  and pos i t i ve  roots  of the quadratic equation 

l o  
MO 

-2 
H([) = + 2M x' + -f = 

U -U H( -Io) 
, A 1 2 and A a r e  the  so lu t ions  of t he  two simultaneous 0 

H(Xo) 
A. = 2c 

(5.28) 

l i n e a r  equations 
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H(-Ao) 1 
[l - H(go) 

22 A+- uo-' 
A1 + A2 2-1 c 2c 

and 

(5.29~1) 

(5.29b) 

and B and B are the solutions of the other two simultaneous linear 

eqautions 
1 2 

1 3- -"I (5.30a) 
U 2 2  o 4M + -  

2-1 H ( i  I Y * l  - 2 B 1 + B 2 =  - -  - - - -  
0 

and 

For odd disturbances, by substituting Eq.(5.13) into Eq.(5.19), we 

have 

To find an equation for p(< > 0,0,~), l e t  us apply shock boundary condition 

Eq. (5.4) 
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(5.32) 

Again t h i s  boundary condition can be s a t i s f i e d  provided t h a t  

- u -u 
x, t 2 c  0 0 

- - 
D- - P(X > O,O,t) = - -- Rc 6 H(-[ ) F " [ ~ o ( ~ - ~ o ~ ) ]  

(5.33) 

and 
u -u - Rc "(io+ 2M)F'(aoE) (5.34) 

+ + 
p ~ ( 0  ,o , i )  + 2Mpt-O ,o,t) = C 

Now the  problem i s  reduced t o  obta in  a function p(G > O , O , t )  which 

s s t i s f i e s  d i f f e r e n t i a l  equation (5.33) and two boundary conditions a t  
- + -  
x = 0 , y = 0 , t .  These two boundary conditions a r e  (See Appendix B) 
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(5.35) 

and 

(5.36) 

It is sham in Appendix C that the solution for Eq,(5.33) has the form 

p(G > 0,JT = 0,:) = - Rc{ AiF[ao(E-iiG)] + B.F l o  0 (z-ai2)]} 
i=0,1,2 i=1,2 f 

where AilBi  and 1 are defined in the case of even disturbances. i 

For axisymmetric disturbances, by substituting Eq.(5.14) into 

Eq.(5,20), we have 

2 -2 4 where 2 = [(X-f) 

Eq.(5.4) to find yp- (5 > O,O,t). 

+ y )] . Now let us apply shock boundary condition 
' 

Y 

(5.38) 
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Again, this  boundary condition can be sat i s f ied  provided that 

Rc a H(-~o)g"'[~o(~-);d)] 
u -u 

5 z,t [ks (g > O , Q , t ) ]  = g 7 0 

and 

(5.40) 

u -u 
Rc O a (K +2M)g'"(iof) (5.41) yp, ( 0  ,(I,;) + 2MF p y ~  (O+,O,;) = - --- 2n c 0 0  

+ 

It is  shown i n  Appendix B,  that two boundary conditions for Eq.(5.40) 

are 

- i -  Rc [LZkL u u  
-1 Y P p  ,%E) = 7; c 2 c  -1 

(5.42) 

(5.43) 
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A s  shown i n  Appendix C,  the so lu t ion  of Eq.(5.40) has the  form 

(5.44) 

where Ao,hi a r e  defined i n  the  case of even disturbances. 

t he  s t a t i o n s  of t he  following two simultaneous l i n e a r  equations 

C and C2 a r e  1 

(5 .45~~)  

and 

(5 45b) 
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V I .  - FINAL RESULTS 

.The r e s u l t s  obtained i n  Sec t ion  V can  be summarized as folloxs:  

For even d i s tu rbances  

30 



For odd disturbances 

+e c 
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For a x i s y m e t r i c  d i s turbances  

By us ing  t h e  t ransformat ion  (5.1), t h e  d is turbance  pressure  p ( x , y , t )  can 

be obtained from p ( x , y , t ) .  Froa d i f f e r e n t i a l  equat ions  ( 3 . 3 )  and shock 

r e l a t i o n s ,  Eqs.(4.10), t h e  fol lowing express ions  are obtained. 

- - -  

The dis turbance  d e n s i t y  

32 



The x-conponent d i s tu rbance  v e l o c i t y  

where u (x ,y , t )  depending on t h e  prescr ibed  d is turbances  is def ined  by 

Eq. (2.19a) 

0 

The form of shock f r o n t  

The y-component d i s turbance  v e l o c i t y  

where v (x,y,t) and u (x ,y , t )  are r e l a t e d  t o  t h e  prescr ibed  d i s tu rbances  

by Eqs. (2.19). 

0 0 
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V I I .  CONCLUDING REMARKS 

Solutions f o r  t h e  d i f f r a c t i o n  of a plane shock by general two-dimensional 

weak disturbances a re  obtained a n a l y t i c a l l y  by a method developed fo r  t he  

aerodynamics of 

can be described by a combination of d i s t r i b u t i o n  of sources (or s inks) ,  doublets 

and vo r t i ce s  i n  a two-dimensional case, and by a d i s t r i b u t i o n  of point sources 

(or sinks) i n  a n  axisymmetric case. The so lu t ion  f o r  the  disturbance pressure 

behind an advancing shock i n  each case i s  expressed as  i n t e g r a l s  of known 

d i s t r i b u t i o n s  . The shape of d i f f r a c t e d  shock and o ther  disturbance q u a n t i t i e s  

a r e  expressed i n  terms of disturbance pressure and disturbance ve loc i ty  com- 

ponents ahead of t he  shock. 

The disturbances which are caused by moving bodies 

* 

The present so lu t ions  can be applied t o  many p r a c t i c a l l y  i n t e r e s t i n g  shock 

d i f f r a c t i o n  problems. The s i m p l e s t  example is the  d i f f r a c t i o n  of a shock by a 

t h i n  structure** i n  s t i l l  a i r .  Suppose t h a t  the  shape of the  t h i n  s t r u c t u r e  

i s  given as y = h(x') o r  h(x + (Uo - U ) t ) ,  we can determine the  corresponding 

source d i s t r i b u t i o n s  based on t h i s  shape. Ahead of the  shock the  a i r  is  st i l l ,  

there  is no disturbance caused by the  pressure of t h i s  s t ruc ture .  

d i s t r i b u t i o n  fo(x + (U 

disturbance is  zero. 

r e l a t i v e  t o  the  s t ruc tu re .  The disturbance due t o  the s t r u c t u r e  can be 

measured by the  y-component disturbance ve loc i ty  

The source 

- U ) t )  f o r  x > U t  which represents t he  "zero" 

Behind the shock, the undisturbed flow ve loc i ty  i s  (Uo-U) 

0 

f:Dr. Ting pointed out t h a t  the  so lu t ion  of the  problem can be in te rpre ted  as 

i m g e s  of moving s t rengths .  

**For example, a wedge with small wedge angle. 
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v(x u t ,  y + 0, t)  = (U 0 - u) h'[x + (U0- U ) t ]  (7 .1 )  

This  d is turbance  v e l o c i t y  component should be equal  t o  t h e  va lue  due t o  

a d i s t r i b u t i o n  of source on t h e  axis given by 

v(x s U t ,  y 4 0 , t )  = kf[x + (U0- U ) t ]  (4.16) 

Equating E q s . ( - / . l )  and ( 4 . 1 6 ) ,  we have the  corresponding source d i s t r i b u t i o n  

behind the  shock 

If w e  s u b s t i t u t e  Eq.(7.2) and fo= 0 i n t o  our  genera l  s o l u t i o n  i n  Sec t ions  

V and V I ,  we  w i l l  have exac t ly  the  same r e s u l t  as given i n  Ref. 1. 

Using t h e  similar procedure,  we can determine a poin t  source d i s t r i b u -  

t i o n  t h a t  r ep resen t s  a s l ende r  axisymmetric body. The resu l t s  of d i f f r a c t i o n  

of a shock by t h i s  s lender  axisymmetric body is  cons i s t en t  w i th  those  i n  

Ref. 2 .  For t h e  case of moving bodies ,  t he  d i s t r i b u t i o n s  corresponding t o  

a body ahead of a shock i s  no longer  zero. Thei r  s t r e n g t h s  can be determined 

from t h e  relative flow v e l o c i t y  and t h e  body shape. Resul t s  f o r  shock 

d i f f r a c t i o n  of moving bodies  s h a l l  be presented la te r  i n  a sepa ra t e  repor t .  
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APPENDIX A 

SHOCK BOUNDARY CONDITION 

The shock boundary condition i n  the  x , y , t  coordinate system has been 

found t o  be (Section IV) 

(4.11) 

with 

a2 2 a2 D = (R1 + M +  Q2fl T +  (1 + M + 2Mal)c 
x , t  at 

(4.12) 

2 a2 + M ( l  + n l M  - 4) c 7 
ax 

and 

(4.13) 

2 a2* 
c -0-J 2 

ax 
By using Lorentz transformation, Eq. (4.11) becomes 

where 

and 
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- -  
G(x = O , F , i )  can be written in terms of distributions 

Transforming from Eq. (2.15), two-dimensional source distribution is 

with 
uo-u 2 uo-u 5 = (l-M2j' [PIT + 5 + M- U i + M  y g ]  

To find disturbance velocities, let us change variables in Eq. (A.4 )  

- 2 -> 
with 5 = (1-M ) f- E + k + M 2  r, U x - - M; - e ]  

- - -  a m 3  &+ am a i  u0(x,y,t) = - - - ax ai; ax a t  ax 

f ;(s, -2 -2 f 
u - u 2  ( r - y )  

[l + 2 d?J dg -2 -2 f 
0 -  1 a2, 

-2 -2 % [G2- 5 - y ] --T - - - ax (1-M2) 7 - ( T  - y 1 
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-7. -2 f 

-2 - f [T -5 -y ] 

2 ( 7 - Y )  f;@ -- 
d5 -2 -2 -2 f 

0 - -  M (U /U)2 [I1 + M? '27 U rdi a2u 

at2 - (1-M2) 
Y '(7 - Y) 

substituting into Eq.(A.3), we have 

or 

At shock = 0 

Following the similar procedure, we can find G(x = O,y,t) for other 

distributions- For two-dimensional doublet distribution, 

(A. 10) 

For two-dimensional vortex distribution, 

3t(C), = 0 
d5 [(t-7) 2 -5 2 - y - 2 f  ] G(x=O,$,t) = - 

-45 

(A. 11) 

42 



For axisymmetric source d is tr ibut ion,  
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APPENDIX B 

BOUNDARY CONDITIONS FOR EQS.(5.23) (5.33) AND (5.40) 

Following t h e  argument of Ref. 1, a missing boundary cond i t ion  can be 

found from a kind of "mean va lue  theorem" a t  ; = O+, y = 0,  E .  

of even d i s tu rbances ,  i t  g ives  t h e  r e l a t i o n  

For t h e  case 

+ 
p- (0 , O , t )  4- p- (0-, 0,;) = 2pj; (O,O*,t) 

Y Y 

p-(O',O,t) is  obtained from t h e  boundary on ;-axis, Eq. (5.10) 
Y 

uo-u 
p- (o-,o,t) = - Rc - f '(a E )  Y rr 0 

p-(O,O+,t) can be der ived from shock r e l a t i o n s  Eqs. ( 4 . 1 0 ~ )  and (4.10d) 
Y 

c) 

t Y + l  2c M'il u o Y l  = -[(vt R - vo ) - - - 
pY Q2 

Disturbance v e l o c i t y  components can  be der ived from t h e  prescr ibed  d i s t r i b u t i o n s .  

Hence 
2 

R 2~ M -1 

o r  

+ -  
-1 

S u b s t i t u t i n g  Eqs.(B.2) and (B.4) i n t o  Eq.(B.l), w e  have one of t h e  two 

boundary condi t ions  far Eq.(5.23). 

u -u U + 
-1 C 

p7 (0 , O , E )  = Rc 
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D i f f e r e n t i a t i n g  Eq. (B.5) w i th  r e spec t  t o  E and s u b s t i t u t i n g  i n t o  Eq.(5.24) , 

we have t h e  second boundary cond i t ion  

4M3 '0 , 8d 1 a f(t(a E)} -[&T y+l 0 0  0 

For t h e  case of odd d i s tu rbances ,  t h e  "mean va lue  theoremtt a t  

x = 0, 9 = O', gives  t h e  r e l a t i o n  

p(o+,o,t)  + p(O-,O,t) = 2P(O,O+,E) 

p(O-,O,E) is  obtained from Eq. (5.13), 
u -u 

p(O-,O,t) = Rc 0 F(ioE) 

p(O,O+,t) can be der ived  from shock r e l a t i o n s  Eqs. (4.10) 

Then from Eqs. (B. 7) and (5.34), w e  have two boundary condi t ions  f o r  Eq. (5,33), 

p(O+,O,i) = - Rc 

(B. 10) 

and 

4 2  u o +  
- [&T 

(B. 11) 
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For t h e  case of axisymmetric d is turbances  , t h e  "mean va lue  theorem" 

g ives  

i p -  (OI - ,O , i )  + yp,(o-,o,i) = 29pg(0,0+,c) 
Y 

+ yp,(O , O , t )  is  obtained from Eq.(5.14) 
Y 

(B. 13) 

yp- (O,O+,E) can  be obtained from shock r e l a t i o n s  Eq. (4.10) 
Y 

(B. 14) 

Then from Eqs.(B.12) and (5.41), we have two boundary condi t ions  f o r  Eq.(5.40) 

g '(;,E) + , O , i ) =  - Rc [Qzl - -+ 0 - 'o-') 

IT - 2c 

- (p+ U X )  g;'.,i)] 
c y+l  -1 

and 

+- 2c (go + 4M)] aog"(aoi) 

(B. 16) 
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APPENDIX C 

SOLUTIONS OF EQS. (5.23) ,(5.33) AND (5.40) WITH 
THEIR BOUNDtlRY CONDITIONS 

A. Even Disturbances 

The so lu t ion  of d i f f e r e n t i a l  equation (5.23) canbe written i n  the  

following form 

where hl and x2 are two r e a l ,  d i s t i n c t  and poss i t i ve  rootsof t h e  quadratic 

equat ion, 

I' - and re2 are two a r b i t r a r y  functions t o  be determined by two boundary 

conditions Eqs. (5.25) and (5.26) 

e l  
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This  leads  t o  

re2(i) = Rc [A2f'(aof) + B 2 f i ( a o f ) ]  ( 6 . 6 )  

S u b s t i t u t i n g  Eqs. ((3.5) and (C.6)  i n t o  Eqs. (C.3) and ( C . 4 )  and equat ing 

c o e f f i c i e n t s  of f '(a t) and f '(a t ) ,  w e  have 
0 0 0  

u -u 2 2  uo 
+2c A1 f A2 = 

M -1 

and 

s i n c e  

B and B can  be determined uniquely from Eqs. (C. 7) t o  (C. 10) 1 4 '  1 2 Therefore  A 
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B. Odd Disturbances 

The solut ion of d i f f e r e n t i a l  equation (5.33) can be wr i t ten  as 

(C. 11) 

Two a rb i t r a ry  functions I' and r 01 02 can be wr i t ten  i n  the  following form 

TO2(i) = - Rc [A2F(aoi) + B2Fo(aoE)] 

A1,%,B1 and B2 a r e  determined uniquely from Eqs.(C.7) t o  (C.10). 

C. Axisynaaetric Disturbances 

The solut ion of d i f f e r e n t i a l  equation (5.40) can be wr i t ten  as 

- -  
ypji(x > o,o,5) = r a 1  (E .. XIG) + ra2(i - c2G) 

(C. 13) 

(C. 14) 
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Two arbitrary functions I' and ra2 can be written in.the following form a1 

A1 and are determined from Eqs. (C.7) and (C .8 ) .  C and C are determined 

from 

1 2 

0 

(C. 17) 

and 
2 - - 4 2  ' 0  8M 

I C  + x 2 c 2 = - - - - - -  
0 

1 1  

(C. 18) 

50 



NGR3 3 - 0 3.6 - 1 19 
b. PROJECT NO. I 

I 
HYJJ-ASL-68-42 I 

b. OTUER R E P O R T  curl(S) <Any ocher numbers &et may be uasigned 
mi8 mporr) 

d. I No.ne 
10. A V A  (L ABILITY/LIMlfA?lON NOTICES 

Distribution of  this  document is unlimited. 

1 I .  SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVtTY 

National Aeronautics 6r Space Administration 
Washington, D. C. 20546 

None 

111. ABSTRACT 

Solutions for the diffraction of a plane shock wave by general two- 
dimensional weak disturbances are obtained. The technique employed is an 
extension of t h e  method developed by Ting and Ludlo€f far the solution of 
aerodynamics of blasts, 
by dfstributions of sources, doublets and vortices i n  a two-dimenstonal 
case and 
disturbance pressure behind an advancing shock i s  expressed by integrals 
of distributions.  
quantities are expressed in terms of distuzbance pressure behind the 
shock and disturbance veloci ty  components ahead of the shock. 
to  shock diffraction of thin structure in still air  ie shown. Some other 
applications are indicated. 

Dieturbances due to a sol id body are prescribet 

by a distribution of point sources in an axisplgwtric case. The 

The shape of diffracted shock and other disturbance 

Application 



UNCUSSIFIED 
Security Classification 

Shock diffraction 

Disturbances 

Sources, sinks, doublets and vortices 

Aerodynamic 8 of b la 8 t 8 

1. ORIGINATING ACTIVITY: Enter the name and address 
of the contractor, subcontractor, grantee, Department of De- 
fense activity or other organization (corporate author) issuing 
the report. 
2a. REPORT SECUMTY CLASSIFICATION: Enter the over- 
all security classification of the report. Indicate whether 
“Restricted Data” is incruded Marking is to be  in accor& 
a c e  with appropriate security regulations, 
26. GROUP: Automatic downgrading is specified i n  DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual. Entet 
the group number. Also, when applicable. show that optionaL 
markings have been used for Group 3 and Group 4 as author- 
ized. 
3. REPORT TITLE: Enter the complete report title in  all 
capital letters, Titles in all cases s-hould be unclassified. 
If a meaningful title cam& be selected without classifiea- 
tion, show title classification i n  all capitals i n  parenthesis 
immediately followhg the title. 
4. DESCRIPTIVE NOTES If appropriate, enter the type of 
report, e.g., interim, progress. summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 
5. AWfE?OR(S): Enter the name($ of author(@ a s  shown on 
or in the report. Enter last n8me. firsi! name, middle initial. 
If military, show rank and bransh of service. The name of 
the principal auJhor is _a? absolute minimum requirement. 
6. REPORT DATE E h r  the date of the report a s  day, 
month, year; or month, year. ff more than one date appears 
on the report. use date of publication. 
7a. TOTAL NUMI3ER OF PAGES: The total page count 
should follow normal pagination procedures, Le., enter the  
number of pages cbntaining iiiformatioo. 
76. NUMBER OF REFERENCES Enter the total number of 
teferences cited +the report. 
8s. CONTRACT OR GRANT NUMBER: If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 
86, &, & 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc. 
9a. ORIGINATOR‘S REPORT pNMBER(S): Enter the ofti- 
cia1 report number by which the document will be identified 
and controlled by the  originating activity. This number must 
b e  unique to this repart. 
9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the .sponsor), also enter this  numbds). 

U N K  E 

W T  

- 

.I 

LINK C 

R O L E  - W T  

LO. AVAILABILITY/LIMITATION NOTICES: Enter any lim- 
itations on further dissemination of the report, other than those 
imposed by security classification, using standard statements 
such as: 

(1) 

(2) 

(3) 

“Qualified requesters may obtain copies of this 
report from DDC ” 
“Foreign announcement and dissemination of this 
report by DDC is not authorized” 
“U. S, Government agencies may obtain copies of 
this report directly from DDC, Other qualified DDC 
users shall request through 

(4) “U. S. military agencies may obtain copies of this 
report directly from DDC Other qualified users 
shall request through 

* I  

(5 )  “All distribution of this report is controlled Qual- 
ified DDC users shall request through 

9 9  

ff the report has  been furnished to the Office of Technical 
Services, Department of Commerce, for sale  to the public, indi 
cate this fact and enter the price, i f  known. 
21. SUPPLEMENTARY NOTES: Use for 8dditional explana- 
tory notes. 
12. SPONSOR1NC.MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pap 
In& for) the research and development. Include address. 
13. ABSTRACT: Enter an abstract giving a brief and factual 
summary of the document indicatiyq of the report, even though 
it may also appear elsewhere in the body of the technical te- 
port. If additional space is‘required, a-continuation sheet 
shalt be attached. 

ports be unclassified. Each paragraph of the abstract shall 
end with an indication of the military security classification 
of the information in the paragraph, reptesented a s  (m), (S), 
(C), or  CUI. 

There is no limitation on the length of the abstract. How- 
ever, the suggested length Is from 150 to 225 words. 
14. KEY WORDS: Key words are technically meaningful terms 
or shott phrases that characterize a report and may be used as 
index entries for cataloging the report. Key words must be 
selected so that no security classification is required. Iden- 
fiers, such a s  equipment model designation, trade name, mili- 
tary project code name, geographic location, may be used a s  
key words but will be followed by an indication of technical 
context. The assignment of links, rules, and weights is 
optional. 

It is highly desirable that the abstract of classified re- 

UNCLASSIFIED 
Security Classification 


